PUBLICATIONS

View from NCBI (myBibliography)

2024

Adams, L. et al. “Single-nuclei paired multiomic analysis of young, aged, and Parkinson’s disease human midbrain reveals age- and disease-associated glial changes and their contribution to Parkinson’s disease” is finally published, Nature Aging (2024).

2023

Kim, W. et al. An optimized Nurr1 agonist provides disease-modifying effects in Parkinson’s disease models. Nat Commun 14, 4283 (2023).

Basu, S. et al. Transcriptional mutagenesis of alpha-synuclein caused by DNA oxidation in Parkinson’s disease pathogenesis. Acta Neuropathol (2023).

2022

Song, M.K., Adams, L., Lee, J.H. & Kim, Y.S. NXP031 prevents dopaminergic neuronal loss and oxidative damage in the AAV-WT-alpha-synuclein mouse model of Parkinson’s disease. PLoS One 17, e0272085 (2022).

Guhathakurta, S. et al. Regulation of Alphalpha-Synuclein Gene (SNCA) by Epigenetic Modifier TET1 in Parkinson Disease. Int Neurourol J 26, S85-93 (2022).

Guhathakurta, S. et al. Precise epigenomic editing with a SunTag-based modular epigenetic toolkit. Epigenetics, 1-7 (2022).

2021

Guhathakurta, S. et al. Targeted attenuation of elevated histone marks at SNCA alleviates alpha-synuclein in Parkinson’s disease. EMBO Mol Med, e12188 (2021).

2020

Cristovao, A.C. et al. Characterization of a Parkinson’s disease rat model using an upgraded paraquat exposure paradigm. Eur J Neurosci 52, 3242-3255 (2020).

2018 – 1999

Je, G., Guhathakurta, S., Yun, S.P., Ko, H.S. & Kim, Y.S. A novel extended form of alpha-synuclein 3’UTR in the human brain. Mol Brain 11, 29 (2018).

Evangelista, B.A., Kim, Y.S. & Kolpashchikov, D.M. FaptaSyme: A Strategy for Converting a Monomer/Oligomer-Nonselective Aptameric Sensor into an Oligomer-Selective One. Chembiochem (2018).

Je, G. & Kim, Y.S. Mitochondrial ROS-mediated post-transcriptional regulation of alpha-synuclein through miR-7 and miR-153. Neurosci Lett 661, 132-136 (2017).

Je, G. et al. Endogenous Alpha-Synuclein Protein Analysis from Human Brain Tissues Using Single-Molecule Pull-Down Assay. Anal Chem 89, 13044-13048 (2017).

Guhathakurta, S., Evangelista, B.A., Ghosh, S., Basu, S. & Kim, Y.S. Hypomethylation of intron1 of alpha-synuclein gene does not correlate with Parkinson’s disease. Mol Brain 10, 6 (2017).

Guhathakurta, S., Bok, E., Evangelista, B.A. & Kim, Y.S. Deregulation of alpha-synuclein in Parkinson’s disease: Insight from epigenetic structure and transcriptional regulation of SNCA. Prog Neurobiol (2017).

Basu, S., Adams, L., Guhathakurta, S. & Kim, Y.S. A novel tool for monitoring endogenous alpha-synuclein transcription by NanoLuciferase tag insertion at the 3’end using CRISPR-Cas9 genome editing technique. Sci Rep 8, 45883 (2017).

Rocha, S.M. et al. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J Neuroinflammation 13, 137 (2016).

Bae, Y.S. et al. Synthesis and biological evaluation of 3-substituted 5-benzylidene-1-methyl-2-thiohydantoins as potent NADPH oxidase (NOX) inhibitors. Bioorg Med Chem (2016).

Nam, J.H. et al. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain (2015).

Choi, D.H. et al. Role of neuronal NADPH oxidase 1 in the peri-infarct regions after stroke. PLoS One 10, e0116814 (2015).

Basu, S., Je, G. & Kim, Y.S. Transcriptional mutagenesis by 8-oxodG in alpha-synuclein aggregation and the pathogenesis of Parkinson’s disease. Exp Mol Med 47, e179 (2015).

Ha, J.Y. et al. Tnfaip8 l1/Oxi-beta binds to FBXW5, increasing autophagy through activation of TSC2 in a Parkinson’s disease model. J Neurochem (2014).

Choi, D.H. et al. NADPH Oxidase 1, a Novel Molecular Source of ROS in Hippocampal Neuronal Death in Vascular Dementia. Antioxid Redox Signal (2014).

Choi, D.H. et al. Matrix metalloproteinase-3 causes dopaminergic neuronal death through Nox1-regenerated oxidative stress. PLoS One 9, e115954 (2014).

Lee, K.W. et al. Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson’s disease. Neurotherapeutics 10, 143-53 (2013).

Cristovao, A.C., Barata, J., Je, G. & Kim, Y.S. PKCdelta mediates paraquat-induced Nox1 expression in dopaminergic neurons. Biochem Biophys Res Commun (2013).

Chung, Y.C. et al. MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson’s disease. Mediators Inflamm 2013, 370526 (2013).

Campos, F.L. et al. Rodent models of Parkinson’s disease: beyond the motor symptomatology. Front Behav Neurosci 7, 175 (2013).

Kim, Y.S. & Joh, T.H. Matrix Metalloproteinases, New Insights into the Understanding of Neurodegenerative Disorders. Biomol Ther (Seoul) 20, 133-143 (2012).

Cristovao, A.C. et al. NADPH oxidase 1 mediates alpha-synucleinopathy in Parkinson’s disease. J Neurosci 32, 14465-77 (2012).

Choi, D.H. et al. NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson’s disease. Antioxid Redox Signal 16, 1033-45 (2012).

Chaturvedi, R.K. et al. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington’s disease. Hum Mol Genet 21, 3474-88 (2012).

Huh, S.H. et al. Ethyl pyruvate rescues nigrostriatal dopaminergic neurons by regulating glial activation in a mouse model of Parkinson’s disease. J Immunol 187, 960-9 (2011).

Chung, Y.C. et al. Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation. Neuropharmacology 60, 963-74 (2011).

Chung, Y.C. et al. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J Immunol 187, 6508-17 (2011).

Choi, D.H. et al. Role of matrix metalloproteinase 3-mediated alpha-synuclein cleavage in dopaminergic cell death. J Biol Chem 286, 14168-77 (2011).

Choi, D.H. et al. DJ-1 cleavage by matrix metalloproteinase 3 mediates oxidative stress-induced dopaminergic cell death. Antioxid Redox Signal 14, 2137-50 (2011).

Cristovao, A.C., Choi, D.H., Baltazar, G., Beal, M.F. & Kim, Y.S. The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal 11, 2105-18 (2009).

Cho, Y. et al. Doxycycline is neuroprotective against nigral dopaminergic degeneration by a dual mechanism involving MMP-3. Neurotox Res 16, 361-71 (2009).

Song, D.Y. et al. Axotomy-induced dopaminergic neurodegeneration is accompanied with c-Jun phosphorylation and activation transcription factor 3 expression. Exp Neurol 209, 268-78 (2008).

Choi, D.H. et al. A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J Neurochem 106, 405-15 (2008).

Park, Y.K., Chung, Y.S., Kim, Y.S., Kwon, O.Y. & Joh, T.H. Inhibition of gene expression and production of iNOS and TNF-alpha in LPS-stimulated microglia by methanol extract of Phellodendri cortex. Int Immunopharmacol 7, 955-62 (2007).

Kim, Y.S. et al. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21, 179-87 (2007).

Jung, H.W., Chung, Y.S., Kim, Y.S. & Park, Y.K. Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-kappaB in LPS-stimulated BV-2 microglial cells. Exp Mol Med 39, 715-21 (2007).

Kim, Y.S. & Joh, T.H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38, 333-47 (2006).

Cho, B.P. et al. Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 53, 92-102 (2006).

Kim, Y.S. et al. Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 25, 3701-11 (2005).

Park, K.C. et al. Transglutaminase 2 induces nitric oxide synthesis in BV-2 microglia. Biochem Biophys Res Commun 323, 1055-62 (2004).

Lee, J. et al. Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem 279, 53725-35 (2004).

Sugama, S. et al. Temporal and sequential analysis of microglia in the substantia nigra following medial forebrain bundle axotomy in rat. Neuroscience 116, 925-33 (2003).

Cho, B.P. et al. Microglial phagocytosis of dopamine neurons at early phases of apoptosis. Cell Mol Neurobiol 23, 551-60 (2003).

DeGiorgio, L.A. et al. Amyloid precursor protein gene disruption attenuates degeneration of substantia nigra compacta neurons following axotomy. Brain Res 938, 38-44 (2002).

Cho, S. et al. Early c-Fos induction after cerebral ischemia: a possible neuroprotective role. J Cereb Blood Flow Metab 21, 550-6 (2001).

Cho, S. et al. Repression of proinflammatory cytokine and inducible nitric oxide synthase (NOS2) gene expression in activated microglia by N-acetyl-O-methyldopamine: protein kinase A-dependent mechanism. Glia 33, 324-33 (2001).

Sugama, S. et al. Tissue-specific expression of rat IL-18 gene and response to adrenocorticotropic hormone treatment. J Immunol 165, 6287-92 (2000).

Conti, B. et al. Modulation of IL-18 production in the adrenal cortex following acute ACTH or chronic corticosterone treatment. Neuroimmunomodulation 8, 1-7 (2000).

55. Conti, B. et al. Cultures of astrocytes and microglia express interleukin 18. Brain Res Mol Brain Res 67, 46-52 (1999).